Plasma Polymerization of SnOxCy Organic-Like Films and Grafted PNIPAAm Composite Hydrogel with Nanogold Particles for Promotion of Thermal Resistive Properties
نویسندگان
چکیده
In this study, a new type of temperature sensor device was developed. The circular electrode of the thermally sensitive sensor was modified with tetramethyltin (TMT) and O2 plasma to form a thin SnOxCy conductive layer on the electrode surface. The nano-Au particles (AuNPs) were subjected to O2 plasma pretreatment to form peroxide groups on the surface. The thermally sensitive sensor made by mixing the treated AuNPs with N-isopropylacrylamide (NIPAAm) solution and then applying UV-induced grafting polymerization of the NIPAAm-containing solution onto the electrode substrate. The composite hydrogels on the electrode introduce thermo-sensitive polymeric surface films for temperature sensing. Using the ambient environment resistance test to measure the resistance, the lower critical solution temperature (LCST) of AuNPs mixed with NIPAAm hydrogel was found to be 32 ◦C. In common metallic materials, the resistance increased during environmental temperature enhancement. In this study, at ambient temperatures higher than the LCST, the electrode resistance decreases linearly due to the shrinkage structure with AuNPs contacting the circuit electrode.
منابع مشابه
Plasma Polymerization SnOxCy Organic-like Films and Grafted PNIPAAm Composite Hydrogel with Nanogold Particles for Promotion Thermal Resistive Properties Running title: Plasma Polymerization to Improve Thermal Resistive Properties
In this study, a new type of temperature sensor device was developed. The circular electrode of the thermal sensitive sensor was modified with TMT and O2 plasma to enhance the conductivity by forming a thin SnOxCy layer on the electrode surface. The Nano-Au particles were subjected to O2 plasma pretreatment to form peroxide groups on the surface. The thermally sensitive sensor was made by mixin...
متن کاملSynthesis of Silica/Polystyrene Nanocomposite Particles by Miniemulsion Polymerization
Miniemulsion polymerization is one of heterogeneous polymerization method that can be effectively used to synthesis of various novel organic-inorganic nanocomposite particles. This method can provide opportunity of good incorporation between the polymer and inorganic phases in the formed submicrometer-sized particles. In this article, we report preparation polystyrene/silica nanocomposite p...
متن کاملDevelopment of a temperature-sensitive composite hydrogel for drug delivery applications.
To develop materials with improved controllability and specificity, we have investigated composite hydrogels with temperature-sensitive properties using photo cross-linking. Specifically, our novel composite materials are composed of nanoparticles made of poly(N-isopropylacrylamide) (PNIPAAm), temperature-sensitive hydrogels, and a photo cross-linker, poly(ethylene glycol) diacrylate (PEGDA). P...
متن کاملEffect of Using Cold Plasma Treatment on the Surface and Physicochemical Properties of Starch-chitosan Composite Film
Background and Objectives: Cold plasma is an eco-friendly and non-thermal technique, which has become an important technology to change the physical and chemical features of polymers. Recently, cold plasma has been considered in the decontamination and modification of packaging materials in the food industry. Therefore, the objective of this study was to survey the effect of using low-pressure ...
متن کاملInvestigation of Swelling Behavior and Mechanical Properties of a pH-Sensitive Superporous Hydrogel Composite
The objective of the present study is to develop and investigate the swelling behavior of pH-sensitive Superporous Hydrogel (SPH) and SPH composite (SPHC). A novel superporous hydrogel containing poly (methacrylic acid-co-acrylamide) was synthesized from methacrylic acid and acrylamide through the aqueous solution polymerization, using N,N-methylenebisacrylamide as a crosslinker and ammonium...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016